GPUParallel¶
Release v0.0.4. (Installation)
Joblib-like interface for parallel GPU computations (e.g. data preprocessing):
import torch
from gpuparallel import GPUParallel, delayed
def perform(idx, gpu_id, **kwargs):
tensor = torch.Tensor([idx]).to(gpu_id)
return (tensor * tensor).item()
result = GPUParallel(n_gpu=2)(delayed(perform)(idx) for idx in range(5))
print(sorted(result)) # [0.0, 1.0, 4.0, 9.0, 16.0]
Features¶
Sync mode for tasks debug (use
n_gpu = 0
)Progressbar with tqdm:
progressbar=True
Optional ignoring task errors:
ignore_errors=True
See Quickstart and API Reference for details.
User Guide¶
Installation of GPUParallel¶
To install GPUParallel, simply run this simple command in your terminal of choice:
$ python -m pip install gpuparallel
If you want to use unstable version, you can install it from sources. Clone the repo and install:
$ git clone git://github.com/vlivashkin/gpuparallel.git
$ cd gpuparallel
$ python3 -m pip install .
Or, as a shortcut:
$ python3 -m pip install git+git://github.com/vlivashkin/gpuparallel.git
Quickstart¶
Basic usage¶
Calc squares of numbers:
1import torch
2from gpuparallel import GPUParallel, delayed
3
4def perform(idx, gpu_id, **kwargs):
5 tensor = torch.Tensor([idx]).to(gpu_id)
6 return (tensor * tensor).item()
7
8result = GPUParallel(n_gpu=2)(delayed(perform)(idx) for idx in range(5))
9print(sorted(result)) # [0.0, 1.0, 4.0, 9.0, 16.0]
Initialize networks on worker init¶
Function init_fn
is called on init of every worker. All common resources (e.g. networks) can be initialized here.
In this example we create 32 workers on 16 GPUs, init model
when workers are starting and then reuse workers for several batches of tasks:
1from gpuparallel import GPUParallel, delayed
2
3def init(gpu_id=None, **kwargs):
4 global model
5 model = load_model().to(gpu_id)
6
7def perform(img, gpu_id=None, **kwargs):
8 global model
9 return model(img.to(gpu_id))
10
11gp = GPUParallel(n_gpu=16, n_workers_per_gpu=2, init_fn=init)
12results = gp(delayed(perform)(img) for img in fnames)
Reuse initialized workers¶
Once workers are initialized, they keep live until GPUParallel
object exist.
You can perform several queues of tasks without reinitializing worker resources:
1gp = GPUParallel(n_gpu=16, n_workers_per_gpu=2, init_fn=init)
2overall_results = []
3for folder_images in folders:
4 folder_results = gp(delayed(perform)(img) for img in folder_images)
5 overall_results.extend(folder_results)
6del gp # this will close process pool to free memory
Simple logging from workers¶
Use log_to_stderr()
call to init logging, and log.info(message)
to log info from workers:
1from gpuparallel import GPUParallel, delayed, log_to_stderr, log
2
3log_to_stderr()
4
5def perform(idx, worker_id=None, gpu_id=None):
6 hi = f'Hello world #{idx} from worker #{worker_id} with GPU#{gpu_id}!'
7 log.info(hi)
8
9GPUParallel(n_gpu=2)(delayed(perform)(idx) for idx in range(2))
It will return:
[INFO/Worker-1(GPU1)]:Hello world #1 from worker #1 with GPU#1!
[INFO/Worker-0(GPU0)]:Hello world #0 from worker #0 with GPU#0!
API Reference¶
- class gpuparallel.GPUParallel(n_gpu=1, n_workers_per_gpu=1, init_fn: Optional[Callable] = None, progressbar=True, ignore_errors=True)[source]¶
Bases:
object
- __init__(n_gpu=1, n_workers_per_gpu=1, init_fn: Optional[Callable] = None, progressbar=True, ignore_errors=True)[source]¶
- Parameters
n_gpu – Number of GPUs to use. The library doesn’t check if GPUs really available, it is simply provide consistent
worker_id
andgpu_id
to bothinit_fn
and task functions.n_gpu = 0
turns on synced debug mode.n_workers_per_gpu – Number of workers on every GPU.
init_fn – Function which will be called during worker init. Function must have parameters
worker_id
andgpu_id
(or**kwargs
). Helpful to init all common stuff (e.g. neural networks) here.progressbar – Allow to use tqdm progressbar.
ignore_errors – Either ignore errors inside tasks or raise them.